
Seminar #5

Summary (and not only)

Shell functions

Like in C, in Bash we have the opportunity to write user defined functions in order to

enable modularity to our programs. Functions enable us to break down the overall

functionality of a script into smaller, logical subsections, which can then be called in

order to perform some individual task(s) when it is needed. Moreover, using functions

to perform repetitive tasks is a good way to create code reuse; code reuse represents an

important part of the modern programming principles. A function is also a faster way to

run a program, comparative to running a different shell-script.

The general format of a function:

function_name ()

{

list of commands

}

The brackets after the function’s name indicate to the shell that is about a function

declaration. In the following example the Hello function is defined and it is called two

times:

Let’s consider another example, where we define a function abs that computes the

modulus of a given number:

In this example $1 is the value of the first positional parameter. Assuming that the shell-

script is saved as absfunc, we may load into memory the abs function using the dot (.)

command and after that we call the abs function like this:

In the next example we call a function from another function:

The call of f_one will provide the following output:

We may also have recursive functions. Here is an example of a recursive factorial:

